skip to main content


Search for: All records

Creators/Authors contains: "Tarnopolsky, Grigory"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A bstract A pair of the 2D non-unitary minimal models M (2 , 5) is known to be equivalent to a variant of the M (3 , 10) minimal model. We discuss the RG flow from this model to another non-unitary minimal model, M (3 , 8). This provides new evidence for its previously proposed Ginzburg-Landau description, which is a ℤ 2 symmetric theory of two scalar fields with cubic interactions. We also point out that M (3 , 8) is equivalent to the (2 , 8) superconformal minimal model with the diagonal modular invariant. Using the 5-loop results for theories of scalar fields with cubic interactions, we exhibit the 6 − ϵ expansions of the dimensions of various operators. Their extrapolations are in quite good agreement with the exact results in 2D. We also use them to approximate the scaling dimensions in d = 3 , 4 , 5 for the theories in the M (3 , 8) universality class. 
    more » « less
  2. null (Ed.)
    A bstract As shown in [1], two copies of the large N Majorana SYK model can produce spontaneous breaking of a Z 2 symmetry when they are coupled by appropriate quartic terms. In this paper we similarly study two copies of the complex SYK model coupled by a quartic term preserving the U(1) × U(1) symmetry. We also present a tensor counterpart of this coupled model. When the coefficient α of the quartic term lies in a certain range, the coupled large N theory is nearly conformal. We calculate the scaling dimensions of fermion bilinear operators as functions of α . We show that the operator $$ {c}_{1i}^{\dagger }{c}_{2i} $$ c 1 i † c 2 i , which is charged under the axial U(1) symmetry, acquires a complex dimension outside of the line of fixed points. We derive the large N Dyson-Schwinger equations and show that, outside the fixed line, this U(1) symmetry is spontaneously broken at low temperatures because this operator acquires an expectation value. We support these findings by exact diagonalizations extrapolated to large N . 
    more » « less
  3. null (Ed.)